Difference between revisions of "Libre Pathology talk:Study Group"

Jump to navigation Jump to search
no edit summary
Line 114: Line 114:




Robbins and Cotran Chapter 5 9th Edition:
{{hidden|MC cause of spontaneous abortion is ?|<center>[[ A demonstrable chromosomal abnormality.]]</center>}}
{{hidden|1% of all newborn infants possess a gross chromosomal abnormality and 5% of people <25y present with  |<center>[[a genetic disease. ]]</center>}}
{{hidden|Mutation|<center>[[permanent change in the DNA, if affect germ cells are transmitted to the progeny ]]</center>}}
{{hidden|List and describe 4 broad categories of human genetic disorders:|<center>[[Disorders related to mutation sin single genes with large effects i. Usually follow classic Mendelian pattern of inheritance
ii. Often highly penetrant (large proportion of pop with gene has disease)
b. Chromosomal disorders
i. Structural or numerical alterations in autosomes and sex chromosomes
ii. Uncommon, high penetrance
c. Complex multigenic disorders
i. Interactions between multiple variant forms of genes and environmental factors (polymorphisms), poly genic means disease when many polymorphism present
d. Single gene disorders with nonclassic patterns of inheritance (not mendelian)
i. Disorders resulting from triplet repeat mutations
ii. Mutations in mitochondrial DNA
iii. Those influenced by genomic imprinting
iv. Those influenced by gonadal mosaicism]]</center>}}
{{hidden|List and describe the possible outcomes of a point mutation in a coding region?|<center>[[a. Missense mutation – pt mutation changes amino acid code, conservative when the amino acid is preserved, non conservative when replaced with another amino acid
b. Nonsense mutation – makes a stop codon ]]</center>}}
{{hidden|List and describe the possible outcomes of point mutation or deletion in a non-coding region.|<center>[[a. Promoters/enhancers – interfere with binding of transcription factors, marker reduction or total lack of transcription, b. Introns – defective splicing > failure to make mature RNA > no translation]]</center>}}
{{hidden|List and describe the possible outcomes of deletions and insertions.|<center>[[a. Small coding: not multiple of three = frameshift, if multiple of 3 than add or del amino acids accordingly, often premature stop codon
i. Tay Sachs disease: 4 base pair insertion in Hexosaminidase A gene
{{hidden|List and describe the possible outcomes of trinucleotide repeat mutations.
a. Usually G&C, dynamic and increase during gametogenesis, “RNA stutters”
b. Fragile X – CGG 250-4000, Huntinton’s Disease * See Neuropath Notes
{{hidden|List and describe three examples of inheritance of single gene mutations
a. AD – manifested in the heterologous state, one parent of index case is usually affected, males and females affected and both can transmit condition
i. De novo cases may not have affected parent
ii. Penetrance = fraction of people with gene who have the trait
iii. Variable expressivity = those with mutant gene have variety of phenotypes
iv. Often age of onset is delayed so can reproduce before die from disease
v. Biochem mechanisms
1. Reduced production of a protein or dysfunctional/inactive protein
2. Involved in regulation of complex metabolic pathyway subject to feedback inhibition
3. Key structural proteins (collagen and cytoskeleton of RBC)
a. May be a dominant negative , e.g. osteogenesis imperfecta
4. Gain of function are rare, 2 forms
a. Increased in proteins normal function (excess enzyme activity)
b. Huntinton’s diseas (abn protein accumulates, toxic to neurons)
b. AR
i. Largest category – both alleles at a locus are mutated
1. Expression is uniform, complete penetrance common, early onset, unaffected carrier family members, mostly enzymes
c. X Linked
i. All sex linked, and almost all are recessive , if Y Chromosome affected usually infertile males > no progeny
ii. Male expression b/c hemizygous, daughter carriers with variable phenotype because of lionization of 2nd X e.g G6DP
iii. Dominant . vitamin D resistant rickets]]</center>}}
Stopped at P142
Molecular Genetic Diagnosis
1. List three basic molecular diagnostic techniques
a. Karyotyping
b. Southern blot
c. Sanger DNA sequencing
d. Polymerase chain reaction
2. Constitutional vs somatic mutaitons.
Hi Michael, I've started, but mostly just with the questions for now, as I study I will keep working on it. Can you help me, maybe we can make additional discussion pages for each of my "study" exams,e.g. molecular, robbins chapters, cap protocols etc.
Hi Michael, I've started, but mostly just with the questions for now, as I study I will keep working on it. Can you help me, maybe we can make additional discussion pages for each of my "study" exams,e.g. molecular, robbins chapters, cap protocols etc.
Account-creators
99

edits

Navigation menu