Difference between revisions of "Neurodegenerative diseases"

From Libre Pathology
Jump to navigation Jump to search
(→‎Tauopathies: CBD added)
m (vauthors -> authors)
 
(37 intermediate revisions by one other user not shown)
Line 13: Line 13:
{{familytree  | | | | | | | A01 | | | | | | | | A01=Neurodegenerative<br>disorders}}
{{familytree  | | | | | | | A01 | | | | | | | | A01=Neurodegenerative<br>disorders}}
{{familytree  | |,|-|-|-|v|-|^|-|v|-|-|-|v|-|-|-|.| | |}}
{{familytree  | |,|-|-|-|v|-|^|-|v|-|-|-|v|-|-|-|.| | |}}
{{familytree  | B01 | | B02 | | B03 | | B04 | | B05 || B01=Amyloidoses|B02=Tauopathies|B03=α-synucleinopathies|B04=TDP-43|B05=FUS}}
{{familytree  | B01 | | B02 | | B03 | | B04 | | B05 || B01=Amyloidoses|B02=Tauopathies|B03=α-synucleinopathies|B04=TDP-43|B05=FUS/EWS/TAF15}}
{{familytree/end}}
{{familytree/end}}


Line 34: Line 34:
TDP-43 proteinopathies:
TDP-43 proteinopathies:
*[[Amyotrophic lateral sclerosis]].
*[[Amyotrophic lateral sclerosis]].
*Frontotemporal lobar degeneration.
*Frontotemporal lobar degeneration with TDP-43 (FTLD-TDP).


FUS proteinopathies:
FET proteinopathies:
*Basophilic inclusion body disease (BIBD).
*Basophilic inclusion body disease (BIBD).
*Neuronal intermediate filament inclusion disease (NIFID).
*Neuronal intermediate filament inclusion disease (NIFID).
*Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U).
*Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (atypical FTLD-U).


Prionopathies:
Prionopathies:
*Creutzfeldt-Jakob disease (PrP).
*Creutzfeldt-Jakob disease (PrP).
'''Note:''' Some people consider α-synuclein as a prion-like protein.<ref>{{Cite journal  | last1 = Watts | first1 = JC. | title = Calling α-synuclein a prion is scientifically justifiable. | journal = Acta Neuropathol | volume = 138 | issue = 4 | pages = 505-508 | month = Oct | year = 2019 | doi = 10.1007/s00401-019-02058-0 | PMID = 31407029 }}</ref>


====Table====
====Table====
Line 48: Line 50:
{| class="wikitable sortable" style="margin-left:auto;margin-right:auto"
{| class="wikitable sortable" style="margin-left:auto;margin-right:auto"
! Disease
! Disease
! Mutated protein
! Deposited protein
! Distribution
! Distribution
! Clinical
! Clinical
Line 90: Line 92:
|-
|-
| [[Amyotrophic lateral sclerosis|Amyotrophic lateral <br>sclerosis (ALS)]]
| [[Amyotrophic lateral sclerosis|Amyotrophic lateral <br>sclerosis (ALS)]]
| TDP-43
| [[TDP-43]]
| motor neurons
| motor neurons
| spasticity, weakness
| spasticity, weakness
Line 97: Line 99:
|-  
|-  
| Frontotemporal lobar <br>degeneration with TDP-43 (FTLD-TDP)
| Frontotemporal lobar <br>degeneration with TDP-43 (FTLD-TDP)
| TDP-43
| [[TDP-43]]
| cortex, basal ganglia
| cortex, basal ganglia
| dementia, focal cortical syndromes
| dementia, focal cortical syndromes
| histology depends on (type 1-4), ubiquitin and TDP-43+ve, tau and FUS-ve  
| histology depends on (type 1-4), ubiquitin and [[TDP-43]]+ve, tau and FUS-ve  
| [https://commons.wikimedia.org/wiki/File:FTLD_TSP43_hippocampus.jpg]
| [https://commons.wikimedia.org/wiki/File:FTLD_TSP43_hippocampus.jpg]
|-
|-
| Frontotemporal lobar <br>degeneration with FUS (FTLD-FUS)
| Frontotemporal lobar <br>degeneration with FET (FTLD-FET)
| FUS
| FUS/EWS/TAF15
| cortex, medulla, hippocampus, and motor cells of the spinal cord
| cortex, medulla, hippocampus, and motor cells of the spinal cord
| dementia, cases classified as FTLD-U, NIFID and BIBD
| dementia, cases classified as aFTLD-U, NIFID and BIBD
| FUS+ve, TAF15+ve, EWS+ve cytoplasmic & intranuclear inclusions, neuritic threads  
| FUS+ve, TAF15+ve, EWS+ve cytoplasmic & intranuclear inclusions, neuritic threads  
| [http://brain.oxfordjournals.org/content/brain/134/9/2595/F1.medium.gif]
| [http://brain.oxfordjournals.org/content/brain/134/9/2595/F1.medium.gif]
Line 150: Line 152:
===Alpha-synuclein===
===Alpha-synuclein===
Look for:
Look for:
*Lewy bodies (seen in Parkinson's d., Dementia with Lewy bodies) = round cytoplasmic eosinophilic body +/- pale halo.
*Lewy bodies (seen in Parkinson's Disease (PD), Dementia with Lewy bodies (DLB)) = round cytoplasmic eosinophilic body +/- pale halo.
*Glial cytoplasmatic inclusions (Papp-Lantos bodies) seen in MSA.
*Lewy neurites(seen in [[PD]] and [[DLB]]) = abnormal neurites with filaments similar to those found in Lewy bodies.
*Glial cytoplasmatic inclusions (Papp-Lantos bodies) seen in mutisystem atrophy (MSA).
*Beta amyloid in vessels seen in cerebral amyloid angiopathy (CAA).


===Tau===
===Tau===
*AT8 = stains phosphorylated tau.<ref name=pmid19946779>{{cite journal |author=Seelaar H, Klijnsma KY, de Koning I, ''et al.'' |title=Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration |journal=J. Neurol. |volume=257 |issue=5 |pages=747–53 |year=2010 |month=May |pmid=19946779 |pmc=2864899 |doi=10.1007/s00415-009-5404-z |url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864899/}}</ref>
*AT8 = stains phosphorylated tau.<ref name=pmid19946779>{{cite journal |author=Seelaar H, Klijnsma KY, de Koning I, ''et al.'' |title=Frequency of ubiquitin and FUS-positive, [[TDP-43]]-negative frontotemporal lobar degeneration |journal=J. Neurol. |volume=257 |issue=5 |pages=747–53 |year=2010 |month=May |pmid=19946779 |pmc=2864899 |doi=10.1007/s00415-009-5404-z |url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864899/}}</ref>
**''AT'' = anti-tau.
**''AT'' = anti-tau.
**Stains tau 4R and tau 3R.<ref>{{cite journal |author=Kumaran R, Kingsbury A, Coulter I, ''et al.'' |title=DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders |journal=Neurobiol. Dis. |volume=28 |issue=1 |pages=122–32 |year=2007 |month=October |pmid=17719794 |doi=10.1016/j.nbd.2007.07.012 |url=}}</ref>
**Stains tau 4R and tau 3R.<ref>{{cite journal |author=Kumaran R, Kingsbury A, Coulter I, ''et al.'' |title=DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders |journal=Neurobiol. Dis. |volume=28 |issue=1 |pages=122–32 |year=2007 |month=October |pmid=17719794 |doi=10.1016/j.nbd.2007.07.012 |url=}}</ref>
Line 170: Line 174:
===Ubiquitin===
===Ubiquitin===
*Marks proteins for recycling.
*Marks proteins for recycling.
*Stains Barr bodies in hippocampal granule cells<ref> {{Cite journal  | last1 = Gelpi | first1 = E. | title = Clinical Neuropathology teaching case 3-2015: female or male brain? Anti-ubiquitin visualizes Barr bodies in hippocampal granule cells which allows the determination of gender in human brains. | journal = Clin Neuropathol | volume = 34 | issue = 3 | pages = 115-6 | month =  | year =  | doi =  | PMID = 25909954 }}</ref>


====Microscopic====
 
===p62===
*p62; poli-ubiquitin-binding protein p62.<ref name=pmid19946779/>
*p62; poli-ubiquitin-binding protein p62.<ref name=pmid19946779/>


===Microscopic===
Look for:
Look for:
*Lewy bodies. (???)
* Lewy bodies and extracellular pigment in neuromelanin-containing nuclei (SN, LC, DVN) -> PD.
* Spongiform vacuolation in the neuropil (seen in Prion disease and FTLD-TDP).
* Neurofibrillar tangles (pyramidal layer of dentate gyrus).
* Granulovacuolar degeneration (granules within cytoplasmic vacuoles, mainly in the hippocampal pyramidal neurons, seen in AD).
* Cores of amyloid plaqyes.
* Cotton wool plaques (seen in familiar AD).
* Pick cells (balloned neurons in frontal cortex).
* Pick bodies (granular layer of dentate gyrus).
* Extensive astrogliosis (striatonigral degeneration, hepatic encephalopathy).
* Corpora amylacea in the cornu ammonis may be increased in neurodegenerative diseases. <ref>{{Cite journal  | last1 = Kovacs | first1 = GG. | last2 = Risser | first2 = D. | title = Clinical Neuropathology image 6-2014: Corpora amylacea replacing cornu ammonis (CACA). | journal = Clin Neuropathol | volume = 33 | issue = 6 | pages = 378-9 | month =  | year =  | doi =  | PMID = 25343241 }}</ref>
<gallery>
File:213-09-11-Congo Red Lewy body.tif|Lewy body
File:Amyloid plaques alzheimer disease HE stain.jpg|Cotton wool plaques
File:Neurofibrillary tangles in the Hippocampus of an old person with Alzheimer-related pathology, HE 3.JPG|Neurofibrillary tangles
File:SpongiformChangeCJD.jpg | Spongiform vacuolation
</gallery>


=Clinical perspective=
=Clinical perspective=
*Correlations between clinical signs and molecular can be poor.
**Example: The MAPT A152T gene mutation may cause clinical symptoms matching AD, [[Neurodegenerative diseases#Corticobasal degeneration|CBD]], [[Neurodegenerative diseases#Progressive supranuclear palys|PSP]] and  [[Neurodegenerative diseases#Lewy body disease|LBD]].<ref>{{Cite journal  | last1 = Coppola | first1 = G. | last2 = Chinnathambi | first2 = S. | last3 = Lee | first3 = JJ. | last4 = Dombroski | first4 = BA. | last5 = Baker | first5 = MC. | last6 = Soto-Ortolaza | first6 = AI. | last7 = Lee | first7 = SE. | last8 = Klein | first8 = E. | last9 = Huang | first9 = AY. | title = Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. | journal = Hum Mol Genet | volume = 21 | issue = 15 | pages = 3500-12 | month = Aug | year = 2012 | doi = 10.1093/hmg/dds161 | PMID = 22556362 }}</ref>
===Dementia general (mostly useless) DDx===
===Dementia general (mostly useless) DDx===
*[[Alzheimer's disease|Alzheimer's]] dementia - most common.
*[[Alzheimer's disease|Alzheimer's]] dementia - most common.
Line 352: Line 377:
*Misfolded cell-surface protein called PrP<sup>SC</sup>.
*Misfolded cell-surface protein called PrP<sup>SC</sup>.
**This is derived from the protein ''PrP<sup>C</sup>'' encoded by the ''PRNP'' gene.  
**This is derived from the protein ''PrP<sup>C</sup>'' encoded by the ''PRNP'' gene.  
*Different genetics strains are associated with varying clinical phenotype.<ref>{{Cite journal  | last1 = Monari | first1 = L. | last2 = Chen | first2 = SG. | last3 = Brown | first3 = P. | last4 = Parchi | first4 = P. | last5 = Petersen | first5 = RB. | last6 = Mikol | first6 = J. | last7 = Gray | first7 = F. | last8 = Cortelli | first8 = P. | last9 = Montagna | first9 = P. | title = Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism. | journal = Proc Natl Acad Sci U S A | volume = 91 | issue = 7 | pages = 2839-42 | month = Mar | year = 1994 | doi = 10.1073/pnas.91.7.2839 | PMID = 7908444 }}</ref>


Includes:
Includes:
Line 388: Line 415:
*Spongiform changes may be seen in [[ALS]], [[Alzheimer's disease]] and Lewy body disease (e.g. [[Parkinson disease]]); however, the changes are only in the upper cortex and not diffuse.<ref>{{Ref APBR|419 Q4}}</ref>
*Spongiform changes may be seen in [[ALS]], [[Alzheimer's disease]] and Lewy body disease (e.g. [[Parkinson disease]]); however, the changes are only in the upper cortex and not diffuse.<ref>{{Ref APBR|419 Q4}}</ref>


====Images====
===Molecular===
*The CJD phenotype is associated with a PRNP D178N mutation and valine polymorphism at codon 129 (D178N-129V).
** Note: A Met129 polymorphism will cause Fatal familiar insomnia in the setting of the same PRNP D178N mutation. <ref>{{Cite journal  | last1 = Goldfarb | first1 = LG. | last2 = Petersen | first2 = RB. | last3 = Tabaton | first3 = M. | last4 = Brown | first4 = P. | last5 = LeBlanc | first5 = AC. | last6 = Montagna | first6 = P. | last7 = Cortelli | first7 = P. | last8 = Julien | first8 = J. | last9 = Vital | first9 = C. | title = Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. | journal = Science | volume = 258 | issue = 5083 | pages = 806-8 | month = Oct | year = 1992 | doi = 10.1126/science.1439789 | PMID = 1439789 }}</ref>
 
 
<gallery>
<gallery>
Image:SpongiformChangeCJD.jpg | CJD. (WC/DRdoubleB)
Image:SpongiformChangeCJD.jpg | CJD. (WC/DRdoubleB)
Image:VCJD_Tonsil.jpg | vCJD - prion protein immunostain. (WC/Sbrandner)
File:Variant Creutzfeldt-Jakob disease (vCJD), H&E.jpg|Spongiform changes in CJD. (CDC/ Teresa Hammett)
File:Variant CJD HE.jpg | Florid plaques in vCJD. (WC/Sbrandner)
File:Cdc cjd2.jpg | Florid plaques in vCJD - low mag. (WC/CDC.gov)
Image:VCJD_Tonsil.jpg | vCJD - prion protein immunostain tonsil. (WC/Sbrandner)
File:CJD PRP cortex.jpg | sCJD - prion protein immunostain cortex. (WC/jensflorian)
File:CJD PRP cerebellum.jpg | sCJD - prion protein immunostain cerebellum. (WC/jensflorian)
</gallery>
</gallery>
*[http://path.upmc.edu/cases/case86.html CJD - several cases (upmc.edu)].
*[http://path.upmc.edu/cases/case86.html CJD - several cases (upmc.edu)].
Line 498: Line 534:
*Neuronal loss and gliosis (absent in minimal-change MSA).
*Neuronal loss and gliosis (absent in minimal-change MSA).
*Alpha-synuclein-rich glial and neuronal cytoplasmic inclusions in white matter (finding at autopsy).<ref name=pmid18825660>{{Cite journal  | last1 = Wenning | first1 = GK. | last2 = Stefanova | first2 = N. | last3 = Jellinger | first3 = KA. | last4 = Poewe | first4 = W. | last5 = Schlossmacher | first5 = MG. | title = Multiple system atrophy: a primary oligodendrogliopathy. | journal = Ann Neurol | volume = 64 | issue = 3 | pages = 239-46 | month = Sep | year = 2008 | doi = 10.1002/ana.21465 | PMID = 18825660 }}</ref>  
*Alpha-synuclein-rich glial and neuronal cytoplasmic inclusions in white matter (finding at autopsy).<ref name=pmid18825660>{{Cite journal  | last1 = Wenning | first1 = GK. | last2 = Stefanova | first2 = N. | last3 = Jellinger | first3 = KA. | last4 = Poewe | first4 = W. | last5 = Schlossmacher | first5 = MG. | title = Multiple system atrophy: a primary oligodendrogliopathy. | journal = Ann Neurol | volume = 64 | issue = 3 | pages = 239-46 | month = Sep | year = 2008 | doi = 10.1002/ana.21465 | PMID = 18825660 }}</ref>  
**Inclusions in oligodendrocytes (triangular, flame-like or sickle-shaped) are definitive diagnostic for MSA.<ref>MUN. 16 November 2010.</ref><ref>{{cite journal |vauthors=Trojanowski JQ, Revesz T |title=Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy |journal=Neuropathol. Appl. Neurobiol. |volume=33 |issue=6 |pages=615–20 |year=2007 |pmid=17990994 |doi=10.1111/j.1365-2990.2007.00907.x |url=}}</ref>
**Inclusions in oligodendrocytes (triangular, flame-like or sickle-shaped) are definitive diagnostic for MSA.<ref>MUN. 16 November 2010.</ref><ref>{{cite journal |authors=Trojanowski JQ, Revesz T |title=Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy |journal=Neuropathol. Appl. Neurobiol. |volume=33 |issue=6 |pages=615–20 |year=2007 |pmid=17990994 |doi=10.1111/j.1365-2990.2007.00907.x |url=}}</ref>
**Inclusions usu. abundant in basal ganglia, substantia nigra, pontine nuclei, medulla and cerebellum.
**Inclusions usu. abundant in basal ganglia, substantia nigra, pontine nuclei, medulla and cerebellum.
*Pons and Putamen:
*Pons and Putamen:
Line 528: Line 564:
*Neuronal and glial Tau-positive inclusions.<ref>{{Cite journal  | last1 = Dickson | first1 = DW. | last2 = Bergeron | first2 = C. | last3 = Chin | first3 = SS. | last4 = Duyckaerts | first4 = C. | last5 = Horoupian | first5 = D. | last6 = Ikeda | first6 = K. | last7 = Jellinger | first7 = K. | last8 = Lantos | first8 = PL. | last9 = Lippa | first9 = CF. | title = Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. | journal = J Neuropathol Exp Neurol | volume = 61 | issue = 11 | pages = 935-46 | month = Nov | year = 2002 | doi =  | PMID = 12430710 }}</ref>
*Neuronal and glial Tau-positive inclusions.<ref>{{Cite journal  | last1 = Dickson | first1 = DW. | last2 = Bergeron | first2 = C. | last3 = Chin | first3 = SS. | last4 = Duyckaerts | first4 = C. | last5 = Horoupian | first5 = D. | last6 = Ikeda | first6 = K. | last7 = Jellinger | first7 = K. | last8 = Lantos | first8 = PL. | last9 = Lippa | first9 = CF. | title = Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. | journal = J Neuropathol Exp Neurol | volume = 61 | issue = 11 | pages = 935-46 | month = Nov | year = 2002 | doi =  | PMID = 12430710 }}</ref>
**Astrocytic plaques.
**Astrocytic plaques.
**Thread-like lesions
**Thread-like lesions and coiled bodies.
**Ballooned neurons +/-.
*Pathology is cortical and striatal and Gallyas-positive.
*Pathology is cortical and striatal and Gallyas-positive.
*Neuronal loss in the substantia nigra.
*Neuronal loss in the substantia nigra.
DD: PSP (widespread  neurofibrillary degeneration, with characteristic globose NFT).


==Globular glial tauopathies==
==Globular glial tauopathies==
Line 586: Line 625:
*[http://www.nature.com/nrneurol/journal/v6/n2/fig_tab/nrneurol.2009.216_F1.html Pick body (nature.com)].<ref name=pmid20139998>{{Cite journal  | last1 = Grossman | first1 = M. | title = Primary progressive aphasia: clinicopathological correlations. | journal = Nat Rev Neurol | volume = 6 | issue = 2 | pages = 88-97 | month = Feb | year = 2010 | doi = 10.1038/nrneurol.2009.216 | PMID = 20139998 }}</ref>
*[http://www.nature.com/nrneurol/journal/v6/n2/fig_tab/nrneurol.2009.216_F1.html Pick body (nature.com)].<ref name=pmid20139998>{{Cite journal  | last1 = Grossman | first1 = M. | title = Primary progressive aphasia: clinicopathological correlations. | journal = Nat Rev Neurol | volume = 6 | issue = 2 | pages = 88-97 | month = Feb | year = 2010 | doi = 10.1038/nrneurol.2009.216 | PMID = 20139998 }}</ref>


=FUSopathies (FTLD-FUS)=
=TDP Proteinopathies=
==FTLD-TDP==
*Accounts for about 50% of all FTLD cases.
*Degeneration of frontal and temporal lobes.
*Inclusions not seen in HE or silver stains.
*TDP43-positive
**Neuronal cytoplasmic inclusions.
**Neuronal intranuclear inclusions.
**Dystrophic neurites.
*Ubiquitin+ve.
*p62+ve.
*aSynculein-ve.
*Tau-ve.
*FUS-ve.
*Four FTLD-TDP subtypes
** Type A: compact nuclear/cytoplasmatic inclusions, associated with GRN mutations.
** Type B: diffuse nuclear/cytoplasmatic inclusions most often seen in C9orf72 expansion.
** Type C: dystrophic neurites.
** Type D: Lentiform nuclear inclusions, only in cases with VCP mutations.
*C9orf72 mutated show additional DPR+ve staining of TDP‐43‐ve inclusions.
**These addtional inclusions are ubiquitin+ve and p62+ve
 
=FTLD-FET=
* Clinical manifestations depend on the distribution of the pathologic alterations in the CNS
* Clinical manifestations depend on the distribution of the pathologic alterations in the CNS
* Currently 3 disorders among the FTLD-FUS subgroup.
* Currently 3 disorders among the FTLD-FET subgroup.
* In contrast to ALS-FUS, no genetic alterations of FUS have been reported to date for cases within the FTLD-FUS group.
* In contrast to ALS-FUS, no genetic alterations of FUS have been reported to date for cases within the FTLD-FUS group.
* 5–10% of all FTLD cases
* Deposited Proteins: FUS, EWS, TAF-15.
* FUS‐positive inclusions in FTLD cases show co‐aggregation of TAF15 and EWS
**(Different from ALS-FUS)


DDx (also FUS+ve):
DDx (also FUS+ve):
*Spinocerebellar Ataxia (SCA)
*Spinocerebellar Ataxia (SCA)
*Huntington Disease (SD)
*Huntington Disease (SD)
==Atypical FTLD‐U==
* Early onset frontotemporal dementia, rapidly progressive psycho‐behavioural changes.
* Neuronal cytoplasmic inclusions in hippocampus and frontotemporal lobes.
* Ubiquitin+ve, tau/TDP‐ve.
* FET+ve inclusions
** Unique vermiform filamentous neuronal nuclear inclusions.
* Caudate nucleus head degeneration and hippocampal sclerosis.


==Basophilic inclusion body disease==
==Basophilic inclusion body disease==
Line 601: Line 675:
* Intraneuronal cytoplasmic basophilic inclusion bodies.
* Intraneuronal cytoplasmic basophilic inclusion bodies.
* FUS+ve (universally).
* FUS+ve (universally).
* TAF15+ve
* EWS+ve.
* TAF15+ve.
* alpha-Internexin+ve.
* alpha-Internexin+ve.


==Neuronal Intermediate Filament Inclusion Disease==
==Neuronal Intermediate Filament Inclusion Disease==
* AKA: NIFID.
* AKA: NIFID.
* Hyaline conglomerates (brightly eosinophilic branching fibrillar structures embedded in a round, well-delineated, glassy vacuole).  
* Sporadic early‐onset frontotemporal dementia, motor neuron disease, extrapyramidal motor symptoms.
* FUS+ve (heterogenous).
* Hyaline conglomerates (brightly eosinophilic branching fibrillar structures embedded in a round, well-delineated, glassy vacuole).
* Deposits in cerebral cortex, hippocampus, basal ganglia, thalamus, cerebellar dentate, numerous brainstem nuclei and lower motor neurons.  
* FUS+ve/EWS+ve/TAF15+ve (heterogenous).
** FET+ve filamentous nuclear inclusions in the hippocampus.  
* Ubiquitin +/-ve.
* Ubiquitin +/-ve.
* NF +ve (some subunits).
* NF +ve (some subunits).
Line 674: Line 752:
==Amyotrophic lateral sclerosis==
==Amyotrophic lateral sclerosis==
*Abbreviated ''ALS''.
*Abbreviated ''ALS''.
===General===
===General===
*[[AKA]] Lou Gehrig's disease.
*[[AKA]] Lou Gehrig's disease.
*TDP-43 proteinopathy.
*Characterized by motor neuron death.
*Characterized by motor neuron death.
*May be familial and associated with ''SOD1'' gene.<ref name=Ref_PCPBoD8_679>{{Ref PCPBoD8|679}}</ref>
*May be familial and associated with ''C9orf72 expansion'', or ''SOD1'', ''FUS'' and ''TARDBP'' mutations.<ref name=Ref_PCPBoD8_679>{{Ref PCPBoD8|679}}</ref><ref>{{Cite journal  | last1 = Guerrero | first1 = EN. | last2 = Wang | first2 = H. | last3 = Mitra | first3 = J. | last4 = Hegde | first4 = PM. | last5 = Stowell | first5 = SE. | last6 = Liachko | first6 = NF. | last7 = Kraemer | first7 = BC. | last8 = Garruto | first8 = RM. | last9 = Rao | first9 = KS. | title = TDP-43/FUS in motor neuron disease: Complexity and challenges. | journal = Prog Neurobiol | volume = 145-146 | issue =  | pages = 78-97 | month =  | year =  | doi = 10.1016/j.pneurobio.2016.09.004 | PMID = 27693252 }}</ref>
*Pathological protein aggregates cause dysfunction of RNA-binding proteins.


Clinical:
===Clinical===
*Weakness.
*Peak incidence: 50-60yrs.
*2-5 per 100,000 individuals worldwide.
*Dead after disease onset: Usu. 2-5yrs.
*Weakness (Progressive bulbar, limb, thoracic, and abdominal muscle atrophy).
*About 20% of ALS cases develop frontotemporal lobar degeneration (FTLD).
*Environmental toxins are discussed (Guam ALS).<ref>{{Cite journal  | last1 = Chernoff | first1 = N. | last2 = Hill | first2 = DJ. | last3 = Diggs | first3 = DL. | last4 = Faison | first4 = BD. | last5 = Francis | first5 = BM. | last6 = Lang | first6 = JR. | last7 = Larue | first7 = MM. | last8 = Le | first8 = TT. | last9 = Loftin | first9 = KA. | title = A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. | journal = J Toxicol Environ Health B Crit Rev | volume = 20 | issue = 4 | pages = 1-47 | month =  | year = 2017 | doi = 10.1080/10937404.2017.1297592 | PMID = 28598725 }}</ref>


===Microscopic===
===Microscopic===
Features:<ref name=Ref_PCPBoD8_679>{{Ref PCPBoD8|679}}</ref>
Features:<ref name=Ref_PCPBoD8_679>{{Ref PCPBoD8|679}}</ref><ref>{{Cite journal  | last1 = Saberi | first1 = S. | last2 = Stauffer | first2 = JE. | last3 = Schulte | first3 = DJ. | last4 = Ravits | first4 = J. | title = Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. | journal = Neurol Clin | volume = 33 | issue = 4 | pages = 855-76 | month = Nov | year = 2015 | doi = 10.1016/j.ncl.2015.07.012 | PMID = 26515626 }}</ref>
*Motor neurons with ''Bunina bodies''.
*Loss of the giant cells of Betz.
*Motor neurons with eosinophilic inclusions (''Bunina bodies'').
**PAS positive cytoplasmic inclusions.
**PAS positive cytoplasmic inclusions.
*Motor neuron loss + reactive gliosis + neurogenic muscular atrophy.
*Motor neuron loss + reactive gliosis + neurogenic muscular atrophy.
**Loss of myelinated axons in the lateral and anterior columns of the spinal cord.
*Ubiquitinated cytoplasmic inclusions.<ref>{{Cite journal  | last1 = Leigh | first1 = PN. | last2 = Anderton | first2 = BH. | last3 = Dodson | first3 = A. | last4 = Gallo | first4 = JM. | last5 = Swash | first5 = M. | last6 = Power | first6 = DM. | title = Ubiquitin deposits in anterior horn cells in motor neurone disease. | journal = Neurosci Lett | volume = 93 | issue = 2-3 | pages = 197-203 | month = Nov | year = 1988 | doi =  | PMID = 2853844 }}</ref>
*[[TDP-43]] proteinopathy in motor neurons (90% of all sporadic ALS cases).
**SOD1-mutant cases are [[TDP-43]]-ve.<ref>{{Cite journal  | last1 = Nakamura | first1 = S. | last2 = Wate | first2 = R. | last3 = Kaneko | first3 = S. | last4 = Ito | first4 = H. | last5 = Oki | first5 = M. | last6 = Tsuge | first6 = A. | last7 = Nagashima | first7 = M. | last8 = Asayama | first8 = S. | last9 = Fujita | first9 = K. | title = An autopsy case of sporadic amyotrophic lateral sclerosis associated with the I113T SOD1 mutation. | journal = Neuropathology | volume = 34 | issue = 1 | pages = 58-63 | month = Feb | year = 2014 | doi = 10.1111/neup.12049 | PMID = 23773010 }}</ref>
*C9orf72 expansion cases: p62+ve, [[TDP-43]]-ve inclusions in the dentate gyrus, neocortex, and cerebellum.<ref>{{Cite journal  | last1 = Al-Sarraj | first1 = S. | last2 = King | first2 = A. | last3 = Troakes | first3 = C. | last4 = Smith | first4 = B. | last5 = Maekawa | first5 = S. | last6 = Bodi | first6 = I. | last7 = Rogelj | first7 = B. | last8 = Al-Chalabi | first8 = A. | last9 = Hortobágyi | first9 = T. | title = p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. | journal = Acta Neuropathol | volume = 122 | issue = 6 | pages = 691-702 | month = Dec | year = 2011 | doi = 10.1007/s00401-011-0911-2 | PMID = 22101323 }}</ref>
**FUS-mutant cases show FUS+ve, p62+ve (few) and [[TDP-43]]-ve inclusions.<ref>{{Cite journal  | last1 = Vance | first1 = C. | last2 = Rogelj | first2 = B. | last3 = Hortobágyi | first3 = T. | last4 = De Vos | first4 = KJ. | last5 = Nishimura | first5 = AL. | last6 = Sreedharan | first6 = J. | last7 = Hu | first7 = X. | last8 = Smith | first8 = B. | last9 = Ruddy | first9 = D. | title = Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. | journal = Science | volume = 323 | issue = 5918 | pages = 1208-1211 | month = Feb | year = 2009 | doi = 10.1126/science.1165942 | PMID = 19251628 }}</ref>


Images:
Images:
Line 693: Line 784:
*[http://pathology.mc.duke.edu/neuropath/CNSlecture4/alsbunina.jpg Bunina body (duke.edu)].<ref>URL: [http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm]. Accessed on: 30 August 2011.</ref>
*[http://pathology.mc.duke.edu/neuropath/CNSlecture4/alsbunina.jpg Bunina body (duke.edu)].<ref>URL: [http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm]. Accessed on: 30 August 2011.</ref>
*[http://path.upmc.edu/cases/case291.html ALS - several images (upmc.edu)].
*[http://path.upmc.edu/cases/case291.html ALS - several images (upmc.edu)].
<gallery>
File:ALS-TDP-HE.jpg | Motor neuron loss in ALS-TDP. (WC)
File:ALS-TDP-43_IHC.jpg | pTDP-43 positive inclusions in neurons. (WC)
</gallery>
DDx:
*Spinal muscular atrophy.
*Primary Lateral Sclerosis.
*Hereditary Spastic Paraparesis (HSP).


==Hallervorden-Spatz disease==
==Hallervorden-Spatz disease==

Latest revision as of 20:32, 24 May 2020

Neurodegenerative diseases is a big part of neuropathology. It includes some discussion of dementia.

Overview

  • Neurodegenerative disease = essentially progressive and selective neuron loss.
  • Clinically, they are not unique, e.g. dementia can be caused by several diseases (with different molecular etiologies).
    • Each syndrome (e.g. dementia, parkinsonism, ataxia) has a most common etiology and a DDx.
  • They are defined by molecular pathology.[1]
    • The diseases are due to the accumulation of abnormal protein.
      • The amino acid sequence of the protein may be completely normal. The problem may just be folding/protein conformation.

Molecular schema of neurodegenerative disorders:[1]

 
 
 
 
 
 
Neurodegenerative
disorders
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Amyloidoses
 
Tauopathies
 
α-synucleinopathies
 
TDP-43
 
FUS/EWS/TAF15

Common diseases

Amyloidoses:

  • Alzheimer disease (Abeta).

'Pure' tauopathies:

Synucleinopathies:[2]

TDP-43 proteinopathies:

FET proteinopathies:

  • Basophilic inclusion body disease (BIBD).
  • Neuronal intermediate filament inclusion disease (NIFID).
  • Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (atypical FTLD-U).

Prionopathies:

  • Creutzfeldt-Jakob disease (PrP).

Note: Some people consider α-synuclein as a prion-like protein.[3]


Table

Disease/pathology/clinical correlation based on Dickson:[1]

Disease Deposited protein Distribution Clinical Histology Image
Alzheimer disease Abeta (mutated APP) corticolimbic, usu.
spares occipital
dementia plaques, neurofibrillary tangles [1]
Creutzfeldt-Jakob disease PrPres (mutated PrP) cortical & basal ganglia dementia (rapid progression),
movement disorder
cytoplasmic vacuolization, PrP+ve plaques, Kuru plaques (MV2 variant) [2]
Parkinson disease alpha-synuclein brainstem parkinsonism Lewy bodies in substantia nigra and locus coeruleus [3] [4]
Dementia with
Lewy bodies
alpha-synuclein corticolimbic, brainstem dementia + parkinsonism Lewy bodies brainstem and cortical, tangles [5] [6]
Multiple system atrophy alpha-synuclein basal ganglia, brainstem, cerebellum parkinsonism, ataxia Papp-Lantos inclusions (cytoplasmic deposits in oligodendrocytes)[4] [7]
Amyotrophic lateral
sclerosis (ALS)
TDP-43 motor neurons spasticity, weakness motor neuron loss, TDP-43+ve, TAF15-ve, EWS-ve inclusions in motor neurons [8]
Frontotemporal lobar
degeneration with TDP-43 (FTLD-TDP)
TDP-43 cortex, basal ganglia dementia, focal cortical syndromes histology depends on (type 1-4), ubiquitin and TDP-43+ve, tau and FUS-ve [9]
Frontotemporal lobar
degeneration with FET (FTLD-FET)
FUS/EWS/TAF15 cortex, medulla, hippocampus, and motor cells of the spinal cord dementia, cases classified as aFTLD-U, NIFID and BIBD FUS+ve, TAF15+ve, EWS+ve cytoplasmic & intranuclear inclusions, neuritic threads [10]
Progressive supranuclear palsy (FTLD-tau) tau 4R basal ganglia, brainstem atypical parkinsonism with early gait instability, falls, and supranuclear gaze palsy tau-positive globose neurofibrillary tangles
in neurons, tufted astrocytes, coiled bodies
in oligodendrocytes
[11]
Pick disease (FTLD-tau) tau 3R corticolimbic dementia + focal
cortical syndrome
Intraneuronal argyrophilic inclusions (Pick body) [12]
Corticobasal degeneration (CBD) (FTLD-tau) tau 4R cortical, basal ganglia dementia + movement disorder (Parkinson-plus syndrome) ballooned neurons, astrocytic plaques, pretangles in basal nucleus [13]
Argryophilic grain disease (AGD) (FTLD-tau) tau 4R medial temporal lobe, limbic structures late-onset amnestic syndrome Argyrophilic grains (also found unspecific in elederly) [14]

Immunohistochemistry

Alpha-synuclein

Look for:

  • Lewy bodies (seen in Parkinson's Disease (PD), Dementia with Lewy bodies (DLB)) = round cytoplasmic eosinophilic body +/- pale halo.
  • Lewy neurites(seen in PD and DLB) = abnormal neurites with filaments similar to those found in Lewy bodies.
  • Glial cytoplasmatic inclusions (Papp-Lantos bodies) seen in mutisystem atrophy (MSA).
  • Beta amyloid in vessels seen in cerebral amyloid angiopathy (CAA).

Tau

  • AT8 = stains phosphorylated tau.[5]
    • AT = anti-tau.
    • Stains tau 4R and tau 3R.[6]

TDP-43

  • May accumulate due to a progranulin mutation.

Microscopic

Ubiquitin

  • Marks proteins for recycling.
  • Stains Barr bodies in hippocampal granule cells[9]


p62

  • p62; poli-ubiquitin-binding protein p62.[5]

Microscopic

Look for:

  • Lewy bodies and extracellular pigment in neuromelanin-containing nuclei (SN, LC, DVN) -> PD.
  • Spongiform vacuolation in the neuropil (seen in Prion disease and FTLD-TDP).
  • Neurofibrillar tangles (pyramidal layer of dentate gyrus).
  • Granulovacuolar degeneration (granules within cytoplasmic vacuoles, mainly in the hippocampal pyramidal neurons, seen in AD).
  • Cores of amyloid plaqyes.
  • Cotton wool plaques (seen in familiar AD).
  • Pick cells (balloned neurons in frontal cortex).
  • Pick bodies (granular layer of dentate gyrus).
  • Extensive astrogliosis (striatonigral degeneration, hepatic encephalopathy).
  • Corpora amylacea in the cornu ammonis may be increased in neurodegenerative diseases. [10]

Clinical perspective

  • Correlations between clinical signs and molecular can be poor.
    • Example: The MAPT A152T gene mutation may cause clinical symptoms matching AD, CBD, PSP and LBD.[11]

Dementia general (mostly useless) DDx

  • Alzheimer's dementia - most common.
  • Vascular.
    • Multi-infarct dementia.
  • Parkinson's associated dementia.
  • Lewy body dementia.
  • Alcohol-related dementia.
  • Fronto-temporal dementia (Pick disease).
  • Multisystem atrophy.

Mnemonic

Dementia mnemonic VITAMIN D VEST:[12]

  • Vitamin deficiency (B12, folate, thiamine).
  • Infection (HIV).
  • Trauma.
  • Anoxia.
  • Metabolic (Diabetes).
  • Intracranial tumour.
  • Normal pressure hydrocephalus.
  • Degenerative (Alzheimer's, Huntington's, CJD).
  • Vascular.
  • Endocrine.
  • Space occupying lesion (chronic subdural hematoma).
  • Toxins (alcohol).

Functional anatomy of dementia

  • Hippocampus (essential for forming new memories).
  • Frontal lobe (essential for retrieval of memories).

Parkinsonism causes

Amyloidoses

Alzheimer disease

General

  • Onset: episodic memory loss.
  • Diagnosis is clinical & pathologic.
    • Pathologic finding alone are not diagnostic.
    • Onset, rate of progression and the development of pathology are highly variable.
  • Defined by:
    • Pathological accumulation of amyloid β (Aβ) into extracellular plaques.
    • Abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs).
    • Clinicopathological correlation better for NFT than for Aβ.[21]
  • Seen in conjunction with vascular amyloid deposition; see cerebral amyloid angiopathy.
  • Evidence of possible iatrogenic transmission by cadaver-sourced growth hormone batches.[22][23]



Genetics

Genes associated with Alzheimer disease:[24]

  • Amyloid precursor protein (APP).
    • On chromosome 21 - may explain why Trisomy 21 (Down syndrome) increases the risk of Alzheimer disease.[25]
  • Presenilin 1 (PSEN1).[26]
  • Presenilin 2 (PSEN2).[27]
  • Apolipoprotein E (APOE)[28] - specifically the epsilon-4 allele.

Gross

Features:

  • Temporal atrophy, esp. hippocampus.
  • Dilation of:
    • Lateral ventricles.
    • Third ventricle.

Gross/microscopic - disease spread by NF tangles (staging):[29]

  • Alzheimer "spreads" in a reproducible pattern:
    • Stage I-II: entorhinal cortex.
    • Stage III-IV: inferior aspect of brain.
    • Stage V-VI: limbic system.

Minimal sampling:

  • Frontal, parietal & temporal lobe
  • Hippocampus and entorhinal cortex

Additional sampling:

  • Basal ganglia
  • Cerebellum
  • Midbrain (including substantia nigra)
  • Occipital cortex

Images

Microscopic

Features:

  1. Neurofibrillary tangles.
  2. Senile plaques (AKA neuritic plaques).
    • Consists of two components:
      1. Centre - radiates.
        • Consists of Abeta amyloid
      2. Neurites - swollen axons.
    • Considered to be more specific for Alzheimer's than NF tangles.
      • How to remember: senile plaques = specific.
    • There is a CERAD staging system for senile plaque load: 0 (none), I (mild), II (moderate), III (severe).[34]
    • Images: senile plaques (utah.edu)[35] senile plaques - beta-APP - high mag. (WC).
  3. Neuron loss.
  4. +/-Cerebral amyloid angiopathy.

Images

Classification

NIA/AA Guidelines: "ABC" scoring method [36]

  • (A) assessment of amyloid b deposits
  • (B) staging of neurofibrillary tangles
  • (C) scoring of neuritic plaques
(A) abeta plaques (Thal phase)[37] (B) Neurofibrillary tangles (Braak stage) [38] (C) neuritic plaques (CERAD) [39]
(A0) 0 (B0) 0 (C0) none
(A1) 1 (temporal),2 (+frontal, +CA1) (B1) I,II (transentorhinal) (C1) sparse (1–5 neuritic plaques/1 mm2)
(A2) 3 (+diencephalon, +striatum) (B2) III,IV (limbic) (C2) moderate(6–19 neuritic plaques/1 mm2)
(A3) 4 (+brainstem),5 (+cerebellum, +pons) (B3) V,VI (neocortical) (C3) frequent(>20 neuritic plaques/1 mm2)

The ABC score is a good indicator for the likelihood of dementia.

Example: Cerebellar abeta deposits (A3) + tangles in entorhinal cortex and few temporal (B2), + 15 neuritic plaques per 1 mm2 (C2) -> (A3, B3, C2): intermediate AD level change.

Notes:

  • Abeta amyloid:
    • Derived from amyloid precursor protein (APP).
      • APP:
        • Rapid axonal transport - useful as a marker of axonal injury.
        • Function currently not known.
  • Tau:
    • Important in microtubule assembly.

Prion diseases

General

Etiology:[40]

  • Misfolded cell-surface protein called PrPSC.
    • This is derived from the protein PrPC encoded by the PRNP gene.
  • Different genetics strains are associated with varying clinical phenotype.[41]


Includes:

  • Creutzfeldt-Jakob disease (CJD).
  • Sporadic fatal insomnia (sFI).[40]
  • Fatal familial insomnia (FFI).[42][43]
  • Gestmann-Straussler-Scheinker syndrome (GSS) - due to PRNP gene mutations.[44]

IHC

PrPC:[42]

  • Congo red +ve.
  • PAS +ve.

Creutzfeldt-Jakob disease

  • Commonly abbreviated as CJD.

General

  • Rare.
  • Incurable disease.

Usually diagnosed clinically:

  • Characteristic findings:
    • Very rapid decline (3-4 months).
    • Characteristic (cortex findings on) neuroradiology.

Variant Creutzfeldt-Jakob disease

  • Abbreviated vCJD.
General
  • Associated with bovine spongiform encephalopathy (AKA mad cow disease).
  • Should sample: spleen, lymph nodes, tonsils.[45]

Microscopic

Features:

  • Spongy appearance (cytoplasmic vacuolization[46]).

Note:

Molecular

  • The CJD phenotype is associated with a PRNP D178N mutation and valine polymorphism at codon 129 (D178N-129V).
    • Note: A Met129 polymorphism will cause Fatal familiar insomnia in the setting of the same PRNP D178N mutation. [48]


Alpha-synucleinopathies

Without clincial information Parkinson's disease and Dementia with Lewy bodies cannot separated in histology.

Dementia with Lewy bodies

General

Clinical features:

  • Parkinsonian features.
  • Hallucinations (visual).
  • Progressive cognitive decline with fluctuations.

Microscopic

Features:

Note: Cortical Lewy bodies are easily missed in HE.

IHC

  • Alpha-synuclein +ve.

Images

Parkinson disease

General

  • Common - often sporadic.
  • May be genetic.

Clinical TRAP:[49]

  • Tremor.
  • Rigidity.
  • Akinesia.
  • Postural instability.

Genetics:[50]

  • LRRK2 gene[51] - autosomal dominant.
  • PARK2 gene (parkin)[52] - autosomal recessive.

Gross

Features:[53]

  • Abnormally pale substantia nigra.
    • Pigmentation increases with age.
  • Pale locus ceruleus.

Notes:

Microscopic

Features:[53]

  • Loss of pigmented (catecholaminergic) neurons in the substantia nigra and locus ceruleus.
  • Gliosis - due to neuron loss.
  • Lewy bodies (in remaining neurons) - key feature.
    • Eosinophilic cytoplasmic inclusion with "dense" (darker) core and pale (surrounding) halo.
      • Consist of filaments composed of alpha-synuclein.
  • Lewy neurites - alpha-synuclein positive processes.

IHC

  • Alpha-synuclein +ve.

Images

Molecular

  • Hereditary forms in less than 10% of the cases
    • Involved genes are consecutively labeled PARK1, PARK2....

Multiple system atrophy

Multiple system atrophy is a neurodegenerative disease of the parkinsonism-plus disorder group.

General

Clinical findings variable:

  • Parkinsonism (stiatonigral degeneration, MSA-P).
  • Ataxia (olivo-ponto-cerebellar degeneration, MSA-C).
  • Autonomic dysfunction (Shy-Drager syndrome, depreceated).
  • Clinical onset between 40-60 years.
  • Progedient tremor, atxia, laryngeal paresis, wakness, cognitive decline.
  • Patients usually succumb after 6 years from aspiration pneumonia.

DDx:

Macroscopy

Microscopic

Features:

  • Inclusions cerebral, subcortical white matter, cerebellar.
  • Neuronal loss and gliosis (absent in minimal-change MSA).
  • Alpha-synuclein-rich glial and neuronal cytoplasmic inclusions in white matter (finding at autopsy).[54]
    • Inclusions in oligodendrocytes (triangular, flame-like or sickle-shaped) are definitive diagnostic for MSA.[55][56]
    • Inclusions usu. abundant in basal ganglia, substantia nigra, pontine nuclei, medulla and cerebellum.
  • Pons and Putamen:
    • Nuclear inclusions (sparse in most cases).
    • Neuropil threads (alpha-synuclein).
  • Loss of myelinated fibers from external capsule, striatum and pallidum.

Images

Molecular

  • No known alpha-synuclein mutation.
  • Genetic variants of SNCA gene assoicated with MSA. [57]

Tauopathies

More than 20 different degenerative disorders can be classified as tauopathies.[58] FTLD-tau is an umbrella term used for tauopathies including PSP, CBD, PiD and GGT. [59]


Argyrophilic grain disease

Corticobasal degeneration

  • AKA CBD.
  • Symptoms may vary:
    • Progressive asymmetrical rigidity and apraxia, progressive aphasia or dementia.
  • Neuronal and glial Tau-positive inclusions.[60]
    • Astrocytic plaques.
    • Thread-like lesions and coiled bodies.
    • Ballooned neurons +/-.
  • Pathology is cortical and striatal and Gallyas-positive.
  • Neuronal loss in the substantia nigra.

DD: PSP (widespread neurofibrillary degeneration, with characteristic globose NFT).

Globular glial tauopathies

  • Commonly abbreviated GGT.
  • AKA sporadic multiple system tauopathy.
  • Rare disease.[61]
  • Combination of frontotemporal dementia and motor neuron disease or only part thereof.
  • 4-repeat tauopathy.

Microscopic

  • Globular oligodendroglial and astrocytic Tau inclusions.
  • Absence of tufted astrocytes.
  • Mostly Gallyas-negative.


Progressive supranuclear palsy

  • Commonly abbreviated PSP.
  • AKA Steele-Richardson-Olszewski syndrome.

General

  • Diagnosis - clinical.[62]

Clinical:

  • Impaired control of gaze, esp. difficulty looking up and down (supranuclear palsy).[63]
  • Parkinsonism.[15]

Microscopic

Features:[1][62][64]

  • Globose neurofibrillary tangles in neurons.
  • Coiled bodies in oligodendrocytes.
    • Wire coil-like structure around the nucleus.
  • Tufted astrocytes.
    • Near impossible to see without IHC - specifically AT8.
    • Cellular processes filled with crap.
    • Star-like appearance; looks like a road network where all the roads lead to one place (Parisian star).
  • Grumose degeneration of the cerebellar dentate nucleus.
    • Granular eosinophilic material adjacent to nuclei; once thought to be pathognomonic for PSP.[65][66]

Images:

Pick disease

General

  • Dementia.

Gross

  • Frontal and temporal lobe atrophy.[67]
    • May be called "walnut brain"[68] - as it resembles a walnut.

Microscopic

Features:[67]

  • Pick cells = large ballooned neurons.
  • Pick bodies = round, homogenous, intracytoplasmic inclusions, size ~10 micrometers.

Image(s):

TDP Proteinopathies

FTLD-TDP

  • Accounts for about 50% of all FTLD cases.
  • Degeneration of frontal and temporal lobes.
  • Inclusions not seen in HE or silver stains.
  • TDP43-positive
    • Neuronal cytoplasmic inclusions.
    • Neuronal intranuclear inclusions.
    • Dystrophic neurites.
  • Ubiquitin+ve.
  • p62+ve.
  • aSynculein-ve.
  • Tau-ve.
  • FUS-ve.
  • Four FTLD-TDP subtypes
    • Type A: compact nuclear/cytoplasmatic inclusions, associated with GRN mutations.
    • Type B: diffuse nuclear/cytoplasmatic inclusions most often seen in C9orf72 expansion.
    • Type C: dystrophic neurites.
    • Type D: Lentiform nuclear inclusions, only in cases with VCP mutations.
  • C9orf72 mutated show additional DPR+ve staining of TDP‐43‐ve inclusions.
    • These addtional inclusions are ubiquitin+ve and p62+ve

FTLD-FET

  • Clinical manifestations depend on the distribution of the pathologic alterations in the CNS
  • Currently 3 disorders among the FTLD-FET subgroup.
  • In contrast to ALS-FUS, no genetic alterations of FUS have been reported to date for cases within the FTLD-FUS group.
  • 5–10% of all FTLD cases
  • Deposited Proteins: FUS, EWS, TAF-15.
  • FUS‐positive inclusions in FTLD cases show co‐aggregation of TAF15 and EWS
    • (Different from ALS-FUS)

DDx (also FUS+ve):

  • Spinocerebellar Ataxia (SCA)
  • Huntington Disease (SD)


Atypical FTLD‐U

  • Early onset frontotemporal dementia, rapidly progressive psycho‐behavioural changes.
  • Neuronal cytoplasmic inclusions in hippocampus and frontotemporal lobes.
  • Ubiquitin+ve, tau/TDP‐ve.
  • FET+ve inclusions
    • Unique vermiform filamentous neuronal nuclear inclusions.
  • Caudate nucleus head degeneration and hippocampal sclerosis.

Basophilic inclusion body disease

  • AKA: BIBD.
  • Variable clinic (behavioral, cognitive alterations, parkinsonism, motor neuron diseases, ALS-like).
  • Age of onset: 35-70 years.
  • Intraneuronal cytoplasmic basophilic inclusion bodies.
  • FUS+ve (universally).
  • EWS+ve.
  • TAF15+ve.
  • alpha-Internexin+ve.

Neuronal Intermediate Filament Inclusion Disease

  • AKA: NIFID.
  • Sporadic early‐onset frontotemporal dementia, motor neuron disease, extrapyramidal motor symptoms.
  • Hyaline conglomerates (brightly eosinophilic branching fibrillar structures embedded in a round, well-delineated, glassy vacuole).
  • Deposits in cerebral cortex, hippocampus, basal ganglia, thalamus, cerebellar dentate, numerous brainstem nuclei and lower motor neurons.
  • FUS+ve/EWS+ve/TAF15+ve (heterogenous).
    • FET+ve filamentous nuclear inclusions in the hippocampus.
  • Ubiquitin +/-ve.
  • NF +ve (some subunits).
  • p62 +/-ve.
  • TDP43-ve.
  • Tau-ve.
  • α-synuclein-ve.

Other

Chronic traumatic encephalopathy

  • Abbreviated CTE.

Huntington disease

General

  • Autosomal dominant inheritance.
  • Mutation in Huntington gene (HTT):[70]
    • 11-34 CAG repeat = normal.[71]
    • >42 CAG repeat = Huntington disease.

Clinical:[72]

  • Early onset dementia.
  • Involuntary movements (chorea) - both arms and legs.
  • Behaviour changes, e.g. grimacing.
  • Speech changes.

Gross

  • Severe caudate atrophy.[73]
    • Prominent frontal horns of the lateral ventricles.[74]

Note:

  • A normal caudate bulges into the ventricle.

Images:

Microscopic

Features:[72]

  • Neuron loss.
  • Gliosis.

Binswanger disease

General

  • Multi-infarct dementia affecting subcortical white matter.
  • Waste-basket diagnosis; diagnosed if CADASIL and amyloidosis have been excluded.
  • Diagnosis has been controversial -- most with this entity (in the past) were diagnosed with Alzheimer's disease.

Microscopic

Features:

  • Subcortical lesions that replace the myelin consisting of macrophages.

Frontotemporal lobar degeneration with ubiquitinated inclusions

Abbreviated FTLD with ubiquitinated inclusions or FTLD-TDP43.

General

  • There are several forms of frontotemporal dementia.
  • Related to amyotrophic lateral sclerosis (ALS); also a TDP-43 pathology.[75]
    • There are several subtypes of FTLD with TDP-43.

Gross

  • Frontal and temporal lobe atrophy.

Image:

Amyotrophic lateral sclerosis

  • Abbreviated ALS.

General

  • AKA Lou Gehrig's disease.
  • Characterized by motor neuron death.
  • May be familial and associated with C9orf72 expansion, or SOD1, FUS and TARDBP mutations.[76][77]
  • Pathological protein aggregates cause dysfunction of RNA-binding proteins.

Clinical

  • Peak incidence: 50-60yrs.
  • 2-5 per 100,000 individuals worldwide.
  • Dead after disease onset: Usu. 2-5yrs.
  • Weakness (Progressive bulbar, limb, thoracic, and abdominal muscle atrophy).
  • About 20% of ALS cases develop frontotemporal lobar degeneration (FTLD).
  • Environmental toxins are discussed (Guam ALS).[78]

Microscopic

Features:[76][79]

  • Loss of the giant cells of Betz.
  • Motor neurons with eosinophilic inclusions (Bunina bodies).
    • PAS positive cytoplasmic inclusions.
  • Motor neuron loss + reactive gliosis + neurogenic muscular atrophy.
    • Loss of myelinated axons in the lateral and anterior columns of the spinal cord.
  • Ubiquitinated cytoplasmic inclusions.[80]
  • TDP-43 proteinopathy in motor neurons (90% of all sporadic ALS cases).
  • C9orf72 expansion cases: p62+ve, TDP-43-ve inclusions in the dentate gyrus, neocortex, and cerebellum.[82]
    • FUS-mutant cases show FUS+ve, p62+ve (few) and TDP-43-ve inclusions.[83]

Images:

DDx:

  • Spinal muscular atrophy.
  • Primary Lateral Sclerosis.
  • Hereditary Spastic Paraparesis (HSP).

Hallervorden-Spatz disease

  • AKA pantothenate kinase-associated neurodegeneration.

General

  • Uncommon.

Microscopic

Features:[85]

  • Axonal spheroids.
  • Iron deposition.

Images:

Stains

  • Prussian blue +ve.

See also

References

  1. 1.0 1.1 1.2 1.3 Dickson DW (2009). "Neuropathology of non-Alzheimer degenerative disorders". Int J Clin Exp Pathol 3 (1): 1–23. PMC 2776269. PMID 19918325. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776269/?tool=pubmed.
  2. Uversky, VN. (Oct 2008). "Alpha-synuclein misfolding and neurodegenerative diseases.". Curr Protein Pept Sci 9 (5): 507-40. PMID 18855701.
  3. Watts, JC. (Oct 2019). "Calling α-synuclein a prion is scientifically justifiable.". Acta Neuropathol 138 (4): 505-508. doi:10.1007/s00401-019-02058-0. PMID 31407029.
  4. MUN. 15 November 2010.
  5. 5.0 5.1 Seelaar H, Klijnsma KY, de Koning I, et al. (May 2010). "Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration". J. Neurol. 257 (5): 747–53. doi:10.1007/s00415-009-5404-z. PMC 2864899. PMID 19946779. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864899/.
  6. Kumaran R, Kingsbury A, Coulter I, et al. (October 2007). "DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders". Neurobiol. Dis. 28 (1): 122–32. doi:10.1016/j.nbd.2007.07.012. PMID 17719794.
  7. Geser F, Brandmeir NJ, Kwong LK, et al. (May 2008). "Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis". Arch. Neurol. 65 (5): 636–41. doi:10.1001/archneur.65.5.636. PMID 18474740.
  8. URL: http://dictionary.reference.com/browse/skein. Accessed on: 20 November 2010.
  9. Gelpi, E.. "Clinical Neuropathology teaching case 3-2015: female or male brain? Anti-ubiquitin visualizes Barr bodies in hippocampal granule cells which allows the determination of gender in human brains.". Clin Neuropathol 34 (3): 115-6. PMID 25909954.
  10. Kovacs, GG.; Risser, D.. "Clinical Neuropathology image 6-2014: Corpora amylacea replacing cornu ammonis (CACA).". Clin Neuropathol 33 (6): 378-9. PMID 25343241.
  11. Coppola, G.; Chinnathambi, S.; Lee, JJ.; Dombroski, BA.; Baker, MC.; Soto-Ortolaza, AI.; Lee, SE.; Klein, E. et al. (Aug 2012). "Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases.". Hum Mol Genet 21 (15): 3500-12. doi:10.1093/hmg/dds161. PMID 22556362.
  12. Shiau, Carolyn; Toren, Andrew (2006). Toronto Notes 2006: Comprehensive Medical Reference (Review for MCCQE 1 and USMLE Step 2) (22nd edition (2006) ed.). Toronto Notes for Medical Students, Inc.. pp. PS19. ISBN 978-0968592861.
  13. Tuite, PJ.; Krawczewski, K. (Apr 2007). "Parkinsonism: a review-of-systems approach to diagnosis.". Semin Neurol 27 (2): 113-22. doi:10.1055/s-2007-971174. PMID 17390256.
  14. Ahmed, Z.; Asi, YT.; Sailer, A.; Lees, AJ.; Houlden, H.; Revesz, T.; Holton, JL. (Nov 2011). "Review: The neuropathology, pathophysiology and genetics of multiple system atrophy.". Neuropathol Appl Neurobiol. doi:10.1111/j.1365-2990.2011.01234.x. PMID 22074330.
  15. 15.0 15.1 Bertram, K.; Williams, DR. (Apr 2012). "Visual hallucinations in the differential diagnosis of parkinsonism.". J Neurol Neurosurg Psychiatry 83 (4): 448-52. doi:10.1136/jnnp-2011-300980. PMID 22228724.
  16. Mahmoud, F.; Tampi, RR. (Oct 2011). "Valproic Acid-Induced Parkinsonism in the Elderly: A Comprehensive Review of the Literature.". Am J Geriatr Pharmacother. doi:10.1016/j.amjopharm.2011.09.002. PMID 21993183.
  17. Gerlach, M.; Riederer, P.; Przuntek, H.; Youdim, MB. (Dec 1991). "MPTP mechanisms of neurotoxicity and their implications for Parkinson's disease.". Eur J Pharmacol 208 (4): 273-86. PMID 1815982.
  18. Korczyn, AD. (Apr 2015). "Vascular parkinsonism-characteristics, pathogenesis and treatment.". Nat Rev Neurol. doi:10.1038/nrneurol.2015.61. PMID 25917706.
  19. Vilensky, JA.; Gilman, S.; McCall, S. (Jul 2010). "A historical analysis of the relationship between encephalitis lethargica and postencephalitic parkinsonism: a complex rather than a direct relationship.". Mov Disord 25 (9): 1116-23. doi:10.1002/mds.22908. PMID 20629120.
  20. Chauhan, NB. (2014). "Chronic neurodegenerative consequences of traumatic brain injury.". Restor Neurol Neurosci 32 (2): 337-65. doi:10.3233/RNN-130354. PMID 24398724.
  21. Nelson, PT.; Alafuzoff, I.; Bigio, EH.; Bouras, C.; Braak, H.; Cairns, NJ.; Castellani, RJ.; Crain, BJ. et al. (May 2012). "Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature.". J Neuropathol Exp Neurol 71 (5): 362-81. doi:10.1097/NEN.0b013e31825018f7. PMID 22487856.
  22. Duyckaerts, C.; Sazdovitch, V.; Ando, K.; Seilhean, D.; Privat, N.; Yilmaz, Z.; Peckeu, L.; Amar, E. et al. (Feb 2018). "Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology.". Acta Neuropathol 135 (2): 201-212. doi:10.1007/s00401-017-1791-x. PMID 29209767.
  23. Jaunmuktane, Z.; Mead, S.; Ellis, M.; Wadsworth, JD.; Nicoll, AJ.; Kenny, J.; Launchbury, F.; Linehan, J. et al. (Sep 2015). "Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy.". Nature 525 (7568): 247-50. doi:10.1038/nature15369. PMID 26354483.
  24. Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 674-5. ISBN 978-1416054542.
  25. Nieuwenhuis-Mark, RE.. "Diagnosing Alzheimer's dementia in Down syndrome: problems and possible solutions.". Res Dev Disabil 30 (5): 827-38. doi:10.1016/j.ridd.2009.01.010. PMID 19269132.
  26. Online 'Mendelian Inheritance in Man' (OMIM) 104311
  27. Online 'Mendelian Inheritance in Man' (OMIM) 600759
  28. Online 'Mendelian Inheritance in Man' (OMIM) 107741
  29. Braak H, Braak E, Bohl J (1993). "Staging of Alzheimer-related cortical destruction". Eur. Neurol. 33 (6): 403–8. PMID 8307060.
  30. Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; Aster, Jon (2009). Robbins and Cotran pathologic basis of disease (8th ed.). Elsevier Saunders. pp. 1317. ISBN 978-1416031215.
  31. Braak, H.; Braak, E. (1991). "Neuropathological stageing of Alzheimer-related changes.". Acta Neuropathol 82 (4): 239-59. PMID 1759558.
  32. URL: http://www.pakmed.net/academic/age/alz/alz030.htm. Accessed on: 12 November 2010.
  33. URL: http://faculty.washington.edu/alexbert/MEDEX/Fall/NeuroPath_Obj.htm. Accessed on: 13 November 2010.
  34. Mirra, SS.; Heyman, A.; McKeel, D.; Sumi, SM.; Crain, BJ.; Brownlee, LM.; Vogel, FS.; Hughes, JP. et al. (Apr 1991). "The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease.". Neurology 41 (4): 479-86. PMID 2011243.
  35. URL: http://library.med.utah.edu/WebPath/EXAM/IMGQUIZ/npfrm.html. Accessed on: 5 December 2010.
  36. Montine, TJ.; Phelps, CH.; Beach, TG.; Bigio, EH.; Cairns, NJ.; Dickson, DW.; Duyckaerts, C.; Frosch, MP. et al. (Jan 2012). "National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach.". Acta Neuropathol 123 (1): 1-11. doi:10.1007/s00401-011-0910-3. PMID 22101365.
  37. Thal, DR.; Rüb, U.; Orantes, M.; Braak, H. (Jun 2002). "Phases of A beta-deposition in the human brain and its relevance for the development of AD.". Neurology 58 (12): 1791-800. PMID 12084879.
  38. Braak, H.; Braak, E. (1991). "Neuropathological stageing of Alzheimer-related changes.". Acta Neuropathol 82 (4): 239-59. PMID 1759558.
  39. Mirra, SS.; Heyman, A.; McKeel, D.; Sumi, SM.; Crain, BJ.; Brownlee, LM.; Vogel, FS.; Hughes, JP. et al. (Apr 1991). "The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease.". Neurology 41 (4): 479-86. PMID 2011243.
  40. 40.0 40.1 Watts JC, Balachandran A, Westaway D (March 2006). "The expanding universe of prion diseases". PLoS Pathog. 2 (3): e26. doi:10.1371/journal.ppat.0020026. PMC 1434791. PMID 16609731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434791/.
  41. Monari, L.; Chen, SG.; Brown, P.; Parchi, P.; Petersen, RB.; Mikol, J.; Gray, F.; Cortelli, P. et al. (Mar 1994). "Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism.". Proc Natl Acad Sci U S A 91 (7): 2839-42. doi:10.1073/pnas.91.7.2839. PMID 7908444.
  42. 42.0 42.1 Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 672. ISBN 978-1416054542.
  43. Online 'Mendelian Inheritance in Man' (OMIM) 600072
  44. Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 671. ISBN 978-1416054542.
  45. Burton, Julian L.; Rutty, Guy N. (2010). The Hospital Autopsy A Manual of Fundamental Autopsy Practice (3rd ed.). Oxford University Press. pp. 83. ISBN 978-0340965146.
  46. URL: http://moon.ouhsc.edu/kfung/jty1/opaq/PathQuiz/N0I002-PQ01-M.htm. Accessed on: 19 October 2010.
  47. Lefkowitch, Jay H. (2006). Anatomic Pathology Board Review (1st ed.). Saunders. pp. 419 Q4. ISBN 978-1416025887.
  48. Goldfarb, LG.; Petersen, RB.; Tabaton, M.; Brown, P.; LeBlanc, AC.; Montagna, P.; Cortelli, P.; Julien, J. et al. (Oct 1992). "Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism.". Science 258 (5083): 806-8. doi:10.1126/science.1439789. PMID 1439789.
  49. URL: http://www.nysslha.org/i4a/pages/index.cfm?pageid=3519. Accessed on: 30 March 2011.
  50. Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 677. ISBN 978-1416054542.
  51. Online 'Mendelian Inheritance in Man' (OMIM) 609007
  52. Online 'Mendelian Inheritance in Man' (OMIM) 602544
  53. 53.0 53.1 Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; Aster, Jon (2009). Robbins and Cotran pathologic basis of disease (8th ed.). Elsevier Saunders. pp. 1319. ISBN 978-1416031215.
  54. Wenning, GK.; Stefanova, N.; Jellinger, KA.; Poewe, W.; Schlossmacher, MG. (Sep 2008). "Multiple system atrophy: a primary oligodendrogliopathy.". Ann Neurol 64 (3): 239-46. doi:10.1002/ana.21465. PMID 18825660.
  55. MUN. 16 November 2010.
  56. Trojanowski JQ, Revesz T (2007). "Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy". Neuropathol. Appl. Neurobiol. 33 (6): 615–20. doi:10.1111/j.1365-2990.2007.00907.x. PMID 17990994.
  57. Pimenta, PF.; da Silva, RP.; Sacks, DL.; da Silva, PP. (Apr 1989). "Cell surface nanoanatomy of Leishmania major as revealed by fracture-flip. A surface meshwork of 44 nm fusiform filaments identifies infective developmental stage promastigotes.". Eur J Cell Biol 48 (2): 180-90. PMID 2743996.
  58. Williams, DR. (Oct 2006). "Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau.". Intern Med J 36 (10): 652-60. doi:10.1111/j.1445-5994.2006.01153.x. PMID 16958643.
  59. Forrest, SL.; Kril, JJ.; Stevens, CH.; Kwok, JB.; Hallupp, M.; Kim, WS.; Huang, Y.; McGinley, CV. et al. (Feb 2018). "Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies.". Brain 141 (2): 521-534. doi:10.1093/brain/awx328. PMID 29253099.
  60. Dickson, DW.; Bergeron, C.; Chin, SS.; Duyckaerts, C.; Horoupian, D.; Ikeda, K.; Jellinger, K.; Lantos, PL. et al. (Nov 2002). "Office of Rare Diseases neuropathologic criteria for corticobasal degeneration.". J Neuropathol Exp Neurol 61 (11): 935-46. PMID 12430710.
  61. Ahmed, Z.; Bigio, EH.; Budka, H.; Dickson, DW.; Ferrer, I.; Ghetti, B.; Giaccone, G.; Hatanpaa, KJ. et al. (Oct 2013). "Globular glial tauopathies (GGT): consensus recommendations.". Acta Neuropathol 126 (4): 537-544. doi:10.1007/s00401-013-1171-0. PMID 23995422.
  62. 62.0 62.1 URL: http://emedicine.medscape.com/article/1151430-overview. Accessed on: 11 November 2010.
  63. Levy, R. (Jun 2011). "[Progressive supranuclear palsy: what's new?].". Geriatr Psychol Neuropsychiatr Vieil 9 (2): 191-201. doi:10.1684/pnv.2011.0271. PMID 21690028.
  64. Williams DR, Lees AJ (March 2009). "Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges". Lancet Neurol 8 (3): 270–9. doi:10.1016/S1474-4422(09)70042-0. PMID 19233037.
  65. URL: http://neuropathologyblog.blogspot.com/2008/03/grumose-degeneration-in-cerebellar.html. Accessed on: 4 December 2010.
  66. Yamanouchi H, Yokoo H, Yuhara Y, et al. (March 2002). "An autopsy case of ornithine transcarbamylase deficiency". Brain Dev. 24 (2): 91–4. PMID 11891099.
  67. 67.0 67.1 Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 676. ISBN 978-1416054542.
  68. URL: http://medical-dictionary.thefreedictionary.com/Walnut+Brain. Accessed on: 14 March 2012.
  69. Grossman, M. (Feb 2010). "Primary progressive aphasia: clinicopathological correlations.". Nat Rev Neurol 6 (2): 88-97. doi:10.1038/nrneurol.2009.216. PMID 20139998.
  70. Kumar P, Kalonia H, Kumar A (2010). "Huntington's disease: pathogenesis to animal models". Pharmacol Rep 62 (1): 1–14. PMID 20360611.
  71. Online 'Mendelian Inheritance in Man' (OMIM) 613004
  72. 72.0 72.1 Lefkowitch, Jay H. (2006). Anatomic Pathology Board Review (1st ed.). Saunders. pp. 415 Q44. ISBN 978-1416025887.
  73. URL: http://moon.ouhsc.edu/kfung/jty1/NeuroTest/Q07-Ans.htm. Accessed on: 29 October 2010.
  74. URL: http://path.upmc.edu/cases/case117/gross.html. Accessed on: 3 January 2012.
  75. Online 'Mendelian Inheritance in Man' (OMIM) 105400
  76. 76.0 76.1 Mitchell, Richard; Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Aster, Jon (2011). Pocket Companion to Robbins & Cotran Pathologic Basis of Disease (8th ed.). Elsevier Saunders. pp. 679. ISBN 978-1416054542.
  77. Guerrero, EN.; Wang, H.; Mitra, J.; Hegde, PM.; Stowell, SE.; Liachko, NF.; Kraemer, BC.; Garruto, RM. et al. "TDP-43/FUS in motor neuron disease: Complexity and challenges.". Prog Neurobiol 145-146: 78-97. doi:10.1016/j.pneurobio.2016.09.004. PMID 27693252.
  78. Chernoff, N.; Hill, DJ.; Diggs, DL.; Faison, BD.; Francis, BM.; Lang, JR.; Larue, MM.; Le, TT. et al. (2017). "A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans.". J Toxicol Environ Health B Crit Rev 20 (4): 1-47. doi:10.1080/10937404.2017.1297592. PMID 28598725.
  79. Saberi, S.; Stauffer, JE.; Schulte, DJ.; Ravits, J. (Nov 2015). "Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants.". Neurol Clin 33 (4): 855-76. doi:10.1016/j.ncl.2015.07.012. PMID 26515626.
  80. Leigh, PN.; Anderton, BH.; Dodson, A.; Gallo, JM.; Swash, M.; Power, DM. (Nov 1988). "Ubiquitin deposits in anterior horn cells in motor neurone disease.". Neurosci Lett 93 (2-3): 197-203. PMID 2853844.
  81. Nakamura, S.; Wate, R.; Kaneko, S.; Ito, H.; Oki, M.; Tsuge, A.; Nagashima, M.; Asayama, S. et al. (Feb 2014). "An autopsy case of sporadic amyotrophic lateral sclerosis associated with the I113T SOD1 mutation.". Neuropathology 34 (1): 58-63. doi:10.1111/neup.12049. PMID 23773010.
  82. Al-Sarraj, S.; King, A.; Troakes, C.; Smith, B.; Maekawa, S.; Bodi, I.; Rogelj, B.; Al-Chalabi, A. et al. (Dec 2011). "p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS.". Acta Neuropathol 122 (6): 691-702. doi:10.1007/s00401-011-0911-2. PMID 22101323.
  83. Vance, C.; Rogelj, B.; Hortobágyi, T.; De Vos, KJ.; Nishimura, AL.; Sreedharan, J.; Hu, X.; Smith, B. et al. (Feb 2009). "Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6.". Science 323 (5918): 1208-1211. doi:10.1126/science.1165942. PMID 19251628.
  84. URL: http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm. Accessed on: 30 August 2011.
  85. URL: http://path.upmc.edu/cases/case207/dx.html. Accessed on: 11 January 2012.