Difference between revisions of "Logistic regression"

Jump to navigation Jump to search
+R example
(+R example)
Line 78: Line 78:
ylabel('Probability of passing the exam (-)');
ylabel('Probability of passing the exam (-)');
</pre>
</pre>
==R example==
<pre>
noquote ("---------------------------------------------------------------------------------------------------")
noquote ("A script in R to learn about logistic regression")
noquote ("---------------------------------------------------------------------------------------------------")
# Load library
library(rms)
# Data from example on 'Logistic regression' page of Wikipedia - https://en.wikipedia.org/wiki/Logistic_regression
y=c( 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 )
x=c( 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50 )
# Make dataframe
mydata=data.frame(x,y)
# Create logistic regression model
mylrm=lrm(y~x, mydata)
z=predict(mylrm)
# Definite the logistic function
#  https://www.dataquest.io/blog/write-functions-in-r/
logit <- function(t) {
        sigma=1/(1+exp(-t))
        return(sigma)
}
# Get p values from the z values
logit(z)
ypred=logit(z)
# Get the coefficients from the LR model
options(digits=20)
coef(mylrm)
# Calculating the p values using the equation
beta0=-4.0777133660750397581
beta1=1.5046454013690906404
ycalc=1/(1+exp(-(beta0+beta1*x)))
# Check the calculation
noquote("The check...")
ycalc-ypred
# Add ycalc to dataframe
mydata=data.frame(x,y,ypred)
# Plot result
plot(x,ypred, main="Probability of Passing versus Time Studied", ylab="Probability of Passing", xlab="Time Studied in Hours")
# Show results
options(digits=7)
noquote("The model...")
mylrm
noquote("The input values and predicted values...")
mydata
noquote("Done calculation!")
</pre>
===Output===
<pre>
[1] ---------------------------------------------------------------------------------------------------
[1] A script in R to learn about logistic regression
[1] ---------------------------------------------------------------------------------------------------
[1] The check...
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[1] The model...
Logistic Regression Model
lrm(formula = y ~ x, data = mydata)
                      Model Likelihood    Discrimination    Rank Discrim.   
                            Ratio Test          Indexes          Indexes   
Obs            20    LR chi2    11.67    R2      0.589    C      0.895   
0            10    d.f.            1    R2(1,20) 0.413    Dxy    0.790   
1            10    Pr(> chi2) 0.0006    R2(1,15) 0.509    gamma  0.798   
max |deriv| 1e-07                        Brier    0.137    tau-a  0.416   
          Coef    S.E.  Wald Z Pr(>|Z|)
Intercept -4.0777 1.7610 -2.32  0.0206 
x          1.5046 0.6287  2.39  0.0167 
[1] The input values and predicted values...
      x y      ypred
1  0.50 0 0.03471034
2  0.75 0 0.04977295
3  1.00 0 0.07089196
4  1.25 0 0.10002862
5  1.50 0 0.13934447
6  1.75 0 0.19083651
7  1.75 1 0.19083651
8  2.00 0 0.25570318
9  2.25 1 0.33353024
10 2.50 0 0.42162653
11 2.75 1 0.51501086
12 3.00 0 0.60735864
13 3.25 1 0.69261733
14 3.50 0 0.76648083
15 4.00 1 0.87444750
16 4.25 1 0.91027764
17 4.50 1 0.93662366
18 4.75 1 0.95561071
19 5.00 1 0.96909707
20 5.50 1 0.98519444
[1] Done calculation!
</pre>


==See also==
==See also==
48,830

edits

Navigation menu