Light microscopy

From Libre Pathology
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This article examines light microscopy, abbreviated LM.

Resolution

.[1]
Where:

  • = resolving distance; smaller better.
  • = numerical aperture of the objective; typically 0.25 - 1.4, >1.0 is oil immersion, it is usu. inscribed on the lens itself.
  • = numerical aperture of the condenser.
  • = wave length of light.

It follows from the above equation that, closure of the condenser diaphragm results in a loss of resolution, i.e. R is larger.[1]

Stated differently:[2][3]

  • Opening the condenser --> increases resolution & brightness -- but -- decreases depth of field (DOF) & contrast.
  • Closing the condenser --> increases DOF & contrast -- but -- decreases resolution & brightness.

Numerical aperture

NA = numerical aperture.

General formula for NA:[4]
.

Where:

  • n = index of refraction, n = 1.0 for air.
  • theta = half-angle of the max. cone of light

NA and f-number

N = f/D.

Where:

  • N = f-number, e.g. f 1.2, f 1.4, f 11.
    • Smaller N = larger opening.
  • f = focal length.
  • D = diameter of entrance pupil.

At infinity:
.
.
.

Numerical aperture

If one substitutes the above into the equation at the top:
.

Notes:

  • Larger 'D' is better.
  • Larger NA = better.

Lenses

  • Most lens = 'achromats' -- only correct green.
  • 'Apochromatic' lenses - correct all colours; very expensive.

Condenser

  • Condenser -- large flattened lens beneath the specimen.
    • Iris diaphragm.
      • Condenser diaphragm --> incr. contrast for resolution ---- large dia. good resol. bad contrast?
        • Field aperature diaphragm --> optical illumination.

Depth of field

  • Abbreviated DOF.
  • DOF depends on the aperature (small is better).

Relation to other parameters:[3]

  • Inverse relationship with resolution and brightness.
  • Related to contrast.
  • High magnification --> smaller depth of field.

Formula

.[5]

Where:

  • = illuminating light wavelength.
  • n = refractive index of the medium, 1.0 for air.
  • NA = numerical aperature (objective).
  • M = magnification.
  • e = resolution.

Increasing the DOF

  • DOF can be increased by focus stacking.

Software:

Image:

Köhler illumination

Rationale

Procedure

  1. Any specimen on stage.
  2. Focus.
  3. Adjust field aperture (bottom) - to obscure periphery of field of view (FOV).
  4. Raise or lower condenser until field aperture diaphragm clearly focused.
  5. +/-Center 'field aperture diaphragm - using condenser centering screws.

Resolution

  • Usual light microscopes are limited to about 0.2 micrometres.
    • Coming is "Super-resolution microscopy" - using high speed CCDs (charge-coupled devices).[6]

See also

References

External links